Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems

Authors

  • B. Karimi Department of Electrical Engineering, Malek Ashtar University of Technology, Shahin Shar, Iran
  • H. Ghiti Sarand Department of Electrical Engineering, Malek Ashtar University of Technology, Shahin Shar, Iran
Abstract:

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing relative information of neighbors of each agent and characteristics of the communication topology. A radial basis function neural network is used to represent the controller’s structure. The proposed method includes a robust term with adaptive gain to counter the approximation error of the designed neural network as well as the effect of external disturbances. The stability of the overall system is guaranteed through Lyapunov stability analysis. Simulations are performed for two examples: a benchmark nonlinear systems and multiple of autonomous surface vehicles (ASVs). The simulation results verify the merits of the proposed method against uncertainty and disturbances.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

adaptive neural network method for consensus tracking of high-order mimo nonlinear multi-agent systems

this paper is concerned with the consensus tracking problem of high order mimo nonlinear multi-agent systems. the agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. the communication network topology of agents is assumed to be a fixed undirected graph. a distributed adaptive control method is proposed to solve the consensus problem utilizing re...

full text

Adaptive neural control of nonlinear fractional order multi- agent systems in the presence of error constraintion

In this paper, the problem of fractional order multi-agent tracking control problem is considered. External disturbances, uncertainties, error constraints, transient response suitability and desirable response tracking problems are the challenges in this study. Because of these problems and challenges, an adaptive control and neural estimator approaches are used in this study. In the first part...

full text

Adaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems

This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...

full text

Adaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay

In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control  method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...

full text

Output Consensus Control of Nonlinear Non-minimum Phase Multi-agent Systems Using Output Redefinition Method

This paper concerns the problem of output consensus in nonlinear non-minimum phase systems. The main contribution of the paper is to guarantee achieving consensus in the presence of unstable zero dynamics. To achieve this goal, an output redefinition method is proposed. The new outputs of agents are functions of original outputs and internal states and defined such that the dynamics of agents a...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 46  issue 2

pages  11- 21

publication date 2014-11-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023